えんじにあのじゆうちょう

勉強したことを中心にアウトプットしていきます。

Sipeed Maix M1 Dockでまずはサンプルの顔認識を実行する

はじめに 今回は安価な画像処理ニューラルネットワーク用のKPUと言うプロセッサの搭載されたMaix M1 Dockをまずは動かしてみた、というところまでをまとめました。 今回は公式にある顔認識サンプルを動かします。 動かすだけなのですが、色々とドキュメント…

最尤推定によるパラメータ推定

はじめに この世の中に存在するデータは「正規分布」であることが多い、だとか、個数を表す分布は「ポアソン分布」が当てはまりやすいだとか言われていますが、どのようにして、分布を求めればよいでしょうか。数式で表すと、ある確率分布(は確率分布のパラ…

オッズの考え方

はじめに ロジスティック回帰を勉強すると出てくる「オッズ」と言う概念。 なんだかわかりにくいのでまとめてみました。

線形でないパラメータを線形回帰で扱う

はじめに 線形回帰は、端的に言えばあるデータを別のデータと重みトバイアスであるをこうy呂しての関係でデータを表現するということです。 では例えば、で表現されるようなデータは線形回帰で扱えないのでしょうか。僕にもそう考えていた時期がありました。…

二乗和誤差とクロスエントロピー誤差

誤差関数としてよく使われる二乗和誤差とクロスエントロピー誤差について自身の理解をまとめました。

線形回帰をコンピュータによる数値計算、機械学習で解いてみる

はじめに t.marufeuille.dev前回のエントリの実装編です。 あえて直接的な既存ライブラリは用いず、numpyくらいで実装してみます。

線形回帰で考える統計学、機械学習とニューラルネットワーク

統計学、機械学習、ニューラルネットワークの違いについて、自分なりの解釈でまとめてみました。